3 research outputs found

    Spin Splitting Anisotropy in Single Diluted Magnetic Nanowire Heterostructures

    No full text
    We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results

    Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial-Distributed Bragg Reflectors

    No full text
    We present a micropillar cavity where nondesired radial emission is inhibited. The photonic confinement in such a structure is improved by implementation of an additional concentric radial-distributed Bragg reflector. Such a reflector increases the reflectivity in all directions perpendicular to the micropillar axis from a typical value of 15–31% to above 98%. An inhibition of the spontaneous emission of off-resonant excitonic states of quantum dots embedded in the microcavity is revealed by time-resolved experiments. It proves a decreased density of photonic states related to unwanted radial leakage of photons out of the micropillar. For on-resonance conditions, we find that the dot emission rate is increased, evidencing the Purcell enhancement of spontaneous emission. The proposed design can increase the efficiency of single-photon sources and bring to micropillar cavities the functionalities based on lengthened decay times

    Electrical Switch to the Resonant Magneto-Phonon Effect in Graphene

    No full text
    We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around <i>B</i> ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron–phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm<sup>–1</sup> are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response
    corecore